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Corner Transfer Matrices of the Triangular Ising Model 
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Recently, a new technique for investigating the zero-field, eight-vertex model 
on the square lattice using "corner transfer matrices" was suggested by 
Baxter. In this paper these ideas are applied to the anisotropic, ferromag- 
netic, triangular Ising lattice in zero field below its critical temperature. 
The diagonal form of the corner transfer matrix for the triangular lattice 
shows essentially the same structure as that for the square Ising lattice. 
The spontaneous magnetization can be obtained easily and agrees with that 
previously derived. 

KEY WORDS: Ising model; triangular lattice; corner transfer matrices; 
spontaneous magnetization. 

1. I N T R O D U C T I O N  

One o f  the most  famous  models  in stat ist ical  mechanics  is the  Ising mode l  
for  fe r romagnet i sm.  Since Onsager  gave the exact  solut ion of  the two- 
d imens iona l  Ising mode l  for  square  lat t ice in 1944, (1~ intensive studies have 
been carr ied  out  on the mode l  and  var ious  different approaches  to the p rob -  
lem have been developed.  In  the 1950s several independen t  results for  some 
t h e r m o d y n a m i c  proper t ies  o f  the t r iangular  Is ing lat t ice appea red  simul- 
taneously ,  (2-4~ and  var ious  aspects o f  the  t r iangular  lat t ice have been s tudied 

thoroughly .  (5~ 
Mos t  recently,  Baxter  has in i t ia ted  a new technique for the eight-vertex 

model  on the square lat t ice using " c o r n e r  t ransfer  matrices.  ''(6'7~ I t  is the 
pu rpose  of  this pape r  to app ly  these ideas to the  anisotropic ,  ferromagnet ic ,  
t r i angula r  Is ing lat t ice be low its cri t ical  t empera ture .  I t  is found  tha t  the 
d iagona l  fo rm of  the corner  t ransfer  mat r ix  for  the t r iangular  lat t ice shows 
essential ly the same s t ructure  as tha t  for  the square Is ing lat t ice p r o p o s e d  
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by Baxter (6'7~ and that the method arrives at the same result for the spon- 
taneous magnetization as that obtained by other approaches. (4~ 

We will define the corner transfer matrix (CTM) for the triangular 
Ising lattice in zero field in Section 2. As for the square lattice, we can 
diagonalize the CTM and find its eigenvalues by using spinor representa- 
tions first developed by Kaufmann. (8~ The essential procedure in the deriva- 
tion and the results of our analysis on the representatives of the CTM are 
presented in Section 3. In Section 4, we conclude by giving the diagonal 
form of the CTM and obtain the expression for the spontaneous magnetiza- 
tion of the ferromagnetic triangular Ising model. 

Although no new thermodynamic results have yet been obtained by 
this approach, it is hoped that the simplicity of the final expression for the 
diagonal form of the corner transfer matrix may provide illuminating in- 
sights into this model, 

2. THE CORNER TRANSFER M A T R I X  

As the starting point of our formulation, we define the corner transfer 
matrix for a general anisotropic triangular Ising lattice in zero magnetic 
field. 

Consider a hexagonal-shaped lattice plane with 2n + 1 spins sites along 
the major diagonals of the hexagonal, as shown in Fig. 1. We impose the 
condition that the boundary spins of the lattice are all + 1. Label the three 
principal directions of the lattice as a, b, and c and assume only nearest 
neighbor interactions with energies J1, J~, and J3 along these three directions 

§ 

b 

w - k ~ +  
§ W 

Fig. 1. A triangular lattice with hexagonal boundary and 2n + 1 (n = 4) spins along 
each diagonal. 
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a, b, and e, respectively. Let a~ = _+ 1 be the spin of the ith site; then the 
Hamiltonian of  the system is given by 

n - - ( 1 )  

where the summation is over all nearest neighbors and J~j = J1, J2, or J3, 
depeuding on whether the bond between the spins ~r~ and ej is in the direc- 
tion a, b, or e, respectively. The partition function is given by 

Z ,  = ~ e x p ( - f l H )  (2) 

where fl = 1/kBT and the summation here is over all possible spin configura- 
tions of the lattice. 

In a similar way to Ref. 6, we divide the lattice into six "corners"  (A 
to F) with three cuts along the major diagonals of the hexagonal. The par- 
tition is such that each corner contains all the bonds between the spins 
inside the corner but only bonds on the left cut, as seen from the center spin 
of the lattice (see Fig. 2 for corner A). 

Let the center spin of the lattice be el and denote the six half-cuts of  
the lattice by rl ..... r6 as in Fig. 1. Clearly, if all the spins on ~-1,..., r~ are 
held fixed, the summation in (2) can be factorized into six parts and Z ,  
can be written as 

z .  = A(,= I (3) 
"f l  1;6 

where A(~-llr2) ..... F(~6]~-1) are the corner transfer matrices that account 

+ 

a '  + 

a .. .  a .  

Tt 

Fig. 2. Corner A of the lattice corresponding to C T M  A. The summation in (4) is over 
all dotted spins. 
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for the contributions to Z .  from bonds in the respective corners. More 
explicitly, if we denote the spins of ~-1 by ~1, e2 ..... e.  and those of r2 by 
~ ' ,  ~2', .... ~ ' ,  we have, for example, that the matrix A is given by 

A(T~ ]'2) = 3~1.~i ~ exp(--pH.,) (4) 

where H,~ is the interaction Hamiltonian involving all the bonds of the corner 
and the summation is over all interior spins of the corner as shown in Fig. 2. 

Furthermore, it can be seen readily that the matrix D is the same as A. 
E as B, and F as C. Hence (3) can be written as 

Z~ = Tr(ABC) 2 (5) 

We further note that B is obtained from A by replacing J~ by J2, J2 by ./3, 
and Ja by J~. Similarly, C is obtained from A by replacing J1 by J3, Ja by 
J2, and J2 by J1. 

In the thermodynamic limit, the partition function per site is given by 

Z = lim Z~/N (6) 
~--*  oo 

where N is the total number of sites in the lattice and the free energy per 
s i t e f i s  

1 
- 3 f  = lirn _~ In Z~ (7) 

Also, the spontaneous magnetization M is just 

Tr{S(ABC) 2} 
M = <crr> = Tr((ABC)2} (8) 

where 

S ( e l  ..... e . ]e l ' ,  .... e, ') = el 3o1,~ i 3~2,~..-3~.,~ a (9) 

is the diagonal center-spin operator. Since the matrices A, B, and C all break 
into two diagonal blocks corresponding to ol = + 1 or - 1, they commute 
with the diagonal matrix S. 

The problem of evaluating the partition function and spontaneous 
magnetization therefore reduces to evaluating the eigenvalues of the product 
A BC  of the corner transfer matrices. 

3. THE R E P R E S E N T A T I V E S  OF THE C T M  

The problem now is to diagonalize ABC. Since the method of calcula- 
tion is essentially the same as the case of a square lattice, (7~ we will outline 
the important steps here and present the results afterwards. 
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3.1. The Representatives of CTM A, B, and C 

Define a set of anticommuting operators by 

Pl = d l ,  r2  = cls~ (10) 
P2j-1 = c l . . . c j - 1  dj ,  P2j = cl . . .c js~+l ,  j = 1 ..... n 

where s j ,  cj ,  and d s are the Pauli spin operators acting on thej th  spin and 
are given by 

s , =  (~ 0 ) ,  c j =  (0 ~),  ~ , =  (0 O )  

j =  1,..' n 

and 

(11) 

is the identity matrix. 
The set of all nonsingular 2 2 x 2" matrices X such that 

22 

XP, X -~ = ~ 2k,1~k, 1 =  1,..., 2n (12) 
k = l  

for some 2k~ forms a group ~. The 2n x 2n matrix with elements 2~z is 
called the representative of X and is denoted by )~. The representatives have 
the following properties: 

(i) From the anticommuting properties of the Pk, each representative 
of the group is orthogonal. Furthermore, each representative determines its 
parent matrix to within a multiplicative constant. 

(ii) If  X1,  X2 ..... X , ,  Y are members of the group such that 
X ~ X 2 . . . X ~  = Y,  then the corresponding representatives J?l, ae2 ..... J~r~, I7 
satisfy the same relationship, i.e., )7122-" 22 = 17. 

As for the CTMs, one can decompose them into row matrices in a 
similar way as for the square lattice. (~) 

We consider a more symmetric corner, which includes the bonds on 
both of the cuts, and denote it by A' for corner A and similarly B' and C' 
for corners B and C, respectively. Obviously, the new corner transfer matrix 
A' is related to CTM A through 

A = L~A' (13) 
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w v 
O j+ i - . .  O n + 

(~j  ( ~ j + l  "" " O n  + 

Fig. 3. The  j t h  row of  the  corner  A' ,  which  co r r e sponds  to the  mat r ix  Gj. 

where LA is the matrix that  cancels the effect o f  the added bonds, or, more  
explicitly, 

L A ( ~ ,  ~ .... , ~ . l ~ ' ,  ~ ' ,  . . . .  0".3 

= {exp[-Kz(0"zcr2 + 0"2~3 + "" + cr.~.+l)]} 3~ ,~ - . .  3 . . . .  ;, (14) 

with cr~ + 1 = 1. 
The corner A '  can be built up by rows of  triangles as shown in Fig. 3. 

I f  we define 2" x 2" matrices Gj ( j  = 1 ..... n) by 

Gj(al,  g2 ..... 0".[g1', (r2',-.., cry') 

3~j,~ exp ' ' ' = ~ ,~s  "'" ~k+10"k+l + J2~k~k+l + Jack ~ + 1  

(15) 

O'j J~ O'l§ l Fig. 4. T he  spin  in te rac t ions  c o r r e s p o n d  to ma t r ix  V~. 

p 
with or.+1 = cr.+l = 1, it can be easily seen that  

A '  --- GiG2 ... G .  (16) 

Furthermore,  each row can be regarded as building up by triangles o f  spins 
one at a time (see Fig. 4). So each Gj can be written as 

Gj = V , Y . - z  ... Vj  (17) 

where Vj is given by 

t Vj((T1, 0" 2 , . . . ,  0 " , 1 o " 1 , 0 "  2 ' , . . . ,  0 " , ' )  

= 3~1,~ ~ 3~2,~ ~ -.. 3.j,.~ 3~j+2,~+ 2 ..- 3~.,~ 

x exp[/g(J1%-+10"~-+l + J2~j0"j+l + /30" /~ -+0]  (18) 
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The F) can be writ ten as a p roduc t  o f  the Pauli spin opera tors  defined in 
(11), i.e., 

Vj = (2 sinh 2/(1) 1/2 exp(K2sjsj+ l) 

x exp(Kl*cj§ exp(Kasjsj+l), j = 1, 2 ..... n - 1 (19) 

Vn = exp(K2s~) exp(K3s.) 

where 

K~ = /3J , ,  t anh  K** = e x p ( -  2K,), 

Similarly, LA can be writ ten as 

i = 1, 2, 3 (20) 

I t  can be verified tha t  all the matrices Vj and LA belong to the group 
f~ ment ioned above,  e.g., 

2 j - 1  2j 2 j + l  

,1 1 

~ = 2 j -  1 
2j 

2 j+1  

1 

1 

--i(a'[3 + a]3'7) tiff' -t- eta'7 ia8 

- 3 f l '  - i a ' 3  ~, 

(22) 

where 

~, = coth  2/s 3 = cosech 2/s 

a = cosh 2K2, fl = sinh 2K2 (23) 

a '  = cosh 21s fl' = sinh 2K3 

LA = ~ exp(-K2sjss+l), sn+i = 1 (21) 
J = l  
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and 

( i  ~ -i~ o o ) �9 ~ 0 0 

LA = 0 ~ - ifl (24) 
0 //3 ,~ 

�9 �9 . 

Hence the CTMs A, B, and C are also members of the group (i.e., 
their representatives under Pk exist). 

^ ^ ^ 

3.2. Diagonalization of ABC 

Before we continue our analysis, we observe that the CTMs A, B, and 
C (hence their representatives) do not necessarily commute with each other 
for arbitrary J1, J2, and Ja. However, our aim is to diagonalize the matrix 
A B C  (=-~), i.e., to look for a matrix, say P2, such that 

P ~ I ~ P 2  = ~ a  (25) 

where -~a is a diagonal matrix�9 
As for the representative of A B C ,  we consider a matrix (say t32) that 

takes ~/~C (= ~)  to a block diagonal matrix ~a given by 

A2 

-~a = / 3 ;  1=~/32 = (26) 

where ~j are 2 x 2 orthogonal matrices. Since -~ and ~a are orthogonal 
matrices, one can choose t32 to be orthogonal also. As ~,/~, and C are all 
orthogonal matrices, we may define orthogonal matrices /31 and/3a such 
that 

PilAP3 = -~a (27a) 
P~1/}/31 =/~a (27b) 
/3flC/32 = Ca (27c) 
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and require that ,4a,/~e, and Ca are all orthogonal and of block diagonal 
form. For example, !~a is given by 

= (28) 

*,  

where A~.I> are 2 x 2 orthogonal matrices, and similarly for ~ and Ca with 
A} 1) replaced by ,~m and A} a), respectively. Obviously, we then have 

Note that from the set of  equations (27a)-(27c)/~ is a matrix that diagonal- 
izes the matrix C~/~ and/~3 a matrix that diagonalizes/~C~ to block diagonal 
form. 

From properties (i) and (ii) of  the representatives, the corresponding 
matrices in fr of  the representatives ~a,  /~a, Cd, a n d / ~  can be chosen to 
satisfy the set of equations (27a)-(27c) also, i.e., we can find 2 ~ x 2" matrices 
Aa, Bd, Ca, and P~, i = 1, 2, 3, in ~ satisfying 

pyiAp8 = Aa; P,~IBPi = Ba; p;ICp2 = Ca (30) 

Also, 

AaBaCa -- ~a  (31) 

Since each Aj is a 2 x 2 orthogonal matrix, it can be written as 

a, = 1 ( + P71 i ( P ;  1 - P,)]  
~l_ i (p[~  _ Oj) pj. + p}-I ] 

where pj is a scalar. 
Consider the following 2 ~ x 2 ~ matrix: 

(32) 

f~ 

I ~  �89 + pj) + (1 - pi)sysj+l] (33) 
J = l  

One can easily show that it has the same representative ) e  as given by (26) 
and (32). From property (i) of  the representatives, we conclude that it is 
therefore the same as -@a to within a multiplicative constant. Hence, if we 
can solve (26) or equivalently (27a)-(27c), we shall have obtained the diagonal 
form of N. 
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We now perform the analysis on the representatives. It is convenient 
to group the elements of the matrices A, B, C, and/~, (l = 1, 2, 3) into 2 x 2 
blocks and write 

and 

d = (aij); /~ = (b,j); C = (c,j) (34) 

/~, = (p~)), l = 1, 2, 3 (35) 

where a~j, b~j, c~j, and p~}~ are all 2 x 2 matrices. In the limit of n large, each 
element tends to a limit. These limiting values are conveniently expressed in 
terms of generating functions defined by 

d ( y ,  z) = ~ a, jy ' -  1z J-1 (36a) 
i d  

~(z ,  x) = ~. . bi~z'- 1 # - 1  (36b) 
l , J  

~(x ,  y)  = ~ c~jx'- 1y j-1 (36c) 
t,J" 

and 

p(] ' (x)  = ~ .~=~-l"<"ek,, 1 = 1' 2, 3, j = 1, 2 .... (37) 
/ c = 1  

From (37) we have 

pm 1 fc kj = 2-~i ' y - kp}~  l =  1,2,3 (38) 

where the counter of integration c~ is a simple closed curve surrounding the 
origin in the y plane within and on which p~.Z)(y) is analytic. 

In view of Eqs. (34) and (35), the set of equations (27a)-(27c) can be 
expressed in the form 

~ ai~cp(~) = ,,(2)~(1) (39a) 
k = l  

~b~ep (~? = .(a~(2) (39b) / - ' i j  - j  
k = l  

and 

~ = ,,(l~:~(a) (39c) F ~ J  " J  
/ c = 1  
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Hence, from (36a)-(36c), (38), and (3%)-(3%) one can easily arrive at the 
coupled integral equations 

1 fo se(y, z-Op~.~(z) dz 
a Z 

1 ~(z, x-~)p~.~(x) 7 

a n d  

: (2) (i) pj. (y)hj (40a) 

_ ~ 3 ) ~ ( 2 ~  (40b) = la~  k a , / , , j  

1 s C(x, y -  ~)p~2)(y) dy 2-~ 2 ~- = p}~(x)h} a~ (40c) 

The generating functions d ,  ~ ,  and cg can be evaluated explicitly. For 
example, d is found to be 

1 {[~,'(1 + za/3) - yz~rl 
d ( y ,  z) : S \ - i [ / 3  y + yz/3y - zad3] 

with 

i[,fi'(1 + z3/3! + yz/3 - yS]) 

[~ r - z~(a/3 + y ) ]  

(41) 

A = 1 + y3fi' + z85 - 2yz(flfi' + c.z'r) + y2z85 + yz28/3 ' + y2z2 (42) 

where y, 8, ~, d,/3, and/3' are defined in (23). Note that if we put y = e ~~ 
and z = e ~| (42) becomes 

A = --2yz  
sinh 2/(1 [cosh 2/(-1 cosh 2K2 cosh 2Ka + sinh 2/(1 sinh 2/(2 sinh 2K3 

- sinh 2K2 cos 0 - sinh 2/s cos(0 + q~) - sinh 2K3 cos q~] 

The expression in brackets is just the integrand of the double integral for 
the free energy of the triangular lattice. (m 

3 . 3 .  E l l i p t i c  F u n c t i o n  P a r a m e t r i z a t i o n  

To solve the coupled integral equations (40a)-(40c) we apply the ellip- 
tic function parametrization, which occurs naturally for the triangular lattice 
as follows: 

cosh 2K~ = cn(2v0 (43a) 

sinh 2K~ = - i sn(2v0, i = 1, 2, 3 (43b) 

where sn, cn, and dn are Jacobian elliptic functions with modulus k given 
by(~ 

[(1 - t~)(1 - t~)(1 - ta=)] 2 (44) 
k2 = 16(1 + qt2t3)(tl + t2ta)(t2 + tj1)(ta + tlt~--) 

where h = tanh K~, i = 1, 2,3. 
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Now if we restrict ourselves to the regime where all the Ks are real 
and positive (i.e., we consider only the pure ferromagnetic case), the v~ will 
be all purely imaginary and are subjected to the following conditions: 

0 < Im v~ < K'/2, vl + v2 + v3 = iK'/2 

where If, K' are the complete elliptic integrals of the first kind of moduli k, 
k' = (1 - k2) 1/2, respectively. (These are not to be confused with the energy 
coefficients 1(1, K2, and Ka used above). If  we apply the following transforma- 
tions to the variables of the integral equations (40a)-(40c) 

x = k sn(ul + vl)sn(ul - vl) (45a) 

y = k sn(u2 + v2)sn(u2 - v2) (45b) 

z = k sn(u3 + va)sn(u3 - v3) (45c) 

we can solve the equations in terms of the new variables ul, u2, ua. If  we 
define a new kernel by 

Wl*(u2, ua) dua = d ( y ,  z -1) dz/z (46a) 

W2*(ua, ul) du~, = ~(z,  x-1) dx/x (46b) 

W3*(u~, u2) du2 = Cg(x, y-1) dy/y (460 

we find that each kernel can be written as a product of three matrices, i.e., 

W,*(uj, u,) = D-l(u~, vj)M,(uj, u,)D(u,, v,) (47) 

where i j  l are cyclic permutations of 1 2 3, and D(u, v) and M,(u i, ut) are 
2 x 2 matrices given by 

( - c n ( u - v )  d n ( u + v )  s n ( u - v ) )  (48) 
D(u, v) = cn(u + v) sn(u + v) dn(u v) 

[ ~ ( u l - u j + v j + v 3  - ~ ( u s + u ~ - v j - v l ) ~  (49) 
Mt(us, ul) = \-(~(uj  + ug + vj + v~) 6(ul - uj vj vl)] 

with 

~(u) = dn(u)/sn(u) (50) 

Note that once more the integral equation .is reduced to one involving a 
difference kernel form by the transformation. (9~ 

The coupled integral equations (40a)-(40c) become 

1 fc w~*(uj, uz)p~(u3 du, = p~(u3~,~ ~ (51) 

with i j  l being cyclic permutations of 1 2 3. Under the transformation (35), 
the contour of integration ez' in (51) becomes a line segment (i,h - K, bh + K) 
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in the uz plane, where r h is such that the corresponding contour ct in the 
original x, y, or z (for l = 1, 2, or 3) plane surrounds the poles of the kernel 
M(z, x-l), Cg(x, y-l), or ag(y, z -1) for l = 1, 2, or 3, respectively. An appro- 
priate choice of-q, for (51) is 

[Im us[ + Im(v s + vz) < ~7, < 2iK' - [ I m  us] - Im(v s + vz) (52) 

Equations (40a)-(40c) can then be solved by def in ingjs .  ~) = D(u~, v~) x 
p}~ i = 1, 2, 3, and expanding the functions f a n d  ~ in Fourier series. 

3.4. The Result  of  the  Integral  Equat ions 

On solving the equations, one obtains that the function f}=~(u) is given 
by 

where 

f}~'(u)= [e '=(2s- *)~/zr: - (~ ~ )e-~=s- x'"/ZK]F}~ (53) 

F}i '=  / ~ -ip}~ P}~'~ (54) 

The p'~-~) and y}O are arbitrary. By the condition that the matrices P~ are 
orthogonal, i.e., 

.z m j  - t i n [  = 

m = l  

we have a relationship between p~o and 7~9: 

_ rrqS-(lira (55) 

and ;~j in (15) is given by 

~, ~(1,~(m~a) 1 {qS-(1,2) + q(1/m-s i(q(1/m-s _ q,-(1/2~)~ 
= -J "s 'v = ~_i(q(Zl2)-s _ qi-(1/m) qS-(z/m + q(Z/m-s ] (56) 

where q is the " n o m e "  of the elliptic functions given by q = exp(-  rrK'/K). 
Further, the matrix L~l/2~L~/2 is symmetric, so it is natural to require 

that L21/zP= be orthogonal. From the definitions (10)-(12), the representative 
of an orthogonal matrix X is made up of two by two diagonal subblocks. 
It follows that p}~ and y}o must be equal, so from (55) 

�9 [ rrq s-'l'm ] 1/= 
p~.~) = y~' = +_ i [2kK'-~ 7 7 s- 1)j (57) 
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Also, -~e,/~a, and Ca take up a very simple and neat form with 

/oj~ -(lie) + oj u /~)- j  i(w~l/2)-J - co{-U/2))~ 
= : [  . . . .  i(~@12)-s co{-(1/2)) -='i-u/2) --z- ~,,u12)-Y .! 

where 

(58) 

o~i = ql/Ze-*~dK, i = 1, 2, 3 (59) 

Unfortunately, the matrices P~, P2, and Pa do not appear to have any 
simple structure, but we do note from (48), (53), and (57) that P~ depends 
only on k and v~ (not on v2 or va), and similarly for P2 and P3. 

4. THE D I A G O N A L  FORM OF THE CORNER TRANSFER 
M A T R I C E S  A N D  THE M A G N E T I Z A T I O N  

Back to the original CTM, it is clear from (26), (32), (33), and (56) 
that the matrix *~d can be written 

-~a = const x I--I �89 + qJ-U/2)) + (1 - qJ-U/2))sjs~+l] (60) 
] = 1  

We now consider the following transformation of the representation (which 
corresponds to merely rearranging the rows and columns of the matrices). 
We replace el ..... a~ and al',..., a,,' by the new spin variables t~l ..... /~ and 
/~1', .... /z~' through 

t t r /zj = a~aj+l, /zj - a t aj+l,  j = 1,..., n - 1 (61) 

a n d / ~  = a,,/z~' = (r~'. Under this transformation, we have 

s~s~+ l--> s~, s1--+ sl.. .sn 

with the new ss, G', dj defined under the new spin representation/z~, and/z/ .  
Hence, the matrix S in (9) under the new representation is given by 

S = s l s 2 . . . s ~ =  (~ _ ~ ) |  _ ~ ) |  (62) 

and Eq. (60) becomes 

*~a = const x I-~ �89 + qJ-U/2)) + (1 - qJ-U/2))si] (63) 
J ' = l  

The diagonal form of the matrix ~ can therefore be written in a direct 
product form 

C0 o ) 0 ) -@a = const x | | | (64) ql/2 qa/2 q5/2 
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Actually in this representation, Aa, Ba, and Ca in Eq. (30) also take 
up this simple form [as seen from (28) and (58)], e.g., 

A a = c o n s t  x (~ 0(o112)| (10 0oja/2 ) | (10 0o~j2)| (65) 

Finally, from (8), the spontaneous magnetization is given by 

M Tr{S(ABC)2} 
Tr{(ABC) 2} 

= (1 - q)(1 - q3)(1 - qS)... 
(1 + q)(1 + q3)(1 + qS)... 

= ( k ' ) ~ l ~  

= (1  - k ~ )  1/8 

which is just the exact result obtained by other methods. (~,S) 

5. C O N C L U S I O N  

The most interesting result obtained in this paper is the diagonal form 
of the product of the CTMs A, B, C. It can be written in a direct product 
form in essentially the same way as the square lattice. It suggests that this 
may be an inherent characteristic of a ferromagnetic Ising model indepen- 
dent of the type of lattice. The matrix Aa (similarly Ba or Ca) obtained in 
this paper depends on vl (v2 or va) only through co l=  e x p [ -  irr(vl - �89 
Hence it can be written in the form exp[(v~ - �89 where ~,~ is a diag- 
onal matrix independent of v~ (and v2, v3). 

Although each CTM A (B or C) depends on all the three parameters 
vl, v2, and Va, yet, as seen from (30), 

A = P~AaPffl 

and from the fact that P~ depends only on v~ (i = 1, 2, or 3), the CTMs 
can be factorized into a product of three matrices each of which depends 
on only one of the parameters in the limit of an infinite lattice. For example, 

A = P(v2 )Aa(v l )P (v~ )  

A C K N O W L E D G M E N T  

The author wishes to express her gratitude to Dr. R. J. Baxter for 
suggesting the problem and for his invaluable discussions and advice through- 
out the course of this work, as well as for his helpful criticisms on the first 
draft of this paper. 



152 S.K. Tsang 

REFERENCES 

1. L. Onsager, Phys. Rev. 65:117 (1944). 
2. R. M. F. Houtappel, Physica 16:425 (1950). 
3. K. Husimi and I. Syozi, Prog. Theor. Phys. 5:177 (1950). 
4. R. B. Potts, Proc. Phys. Soc. Lond. A 68:145 (1955). 
5. J. Stephenson, J. Math. Phys. 5:1009 (1964); 11:420 (1970). 
6. R. J. Baxter, J. Stat. Phys. 15:485 (1976). 
7. R. J. Baxter, J. Stat. Phys. 17:1 (1977). 
8. B. Kaufmann, Phys. Rev. 76:1232 (1949). 
9. L. Onsager, The Ising Model in Two Dimensions, in Critical Phenomena in Alloys, 

Magnets and Superconductors, R. E. Mills, E. Ascher, and R. I. Jaffee, eds., p. 3. 


