# Corner Transfer Matrices of the Triangular Ising Model 

S. K. Tsang ${ }^{1}$

Received March 1, 1977


#### Abstract

Recently, a new technique for investigating the zero-field, eight-vertex model on the square lattice using "corner transfer matrices" was suggested by Baxter. In this paper these ideas are applied to the anisotropic, ferromagnetic, triangular Ising lattice in zero field below its critical temperature. The diagonal form of the corner transfer matrix for the triangular lattice shows essentially the same structure as that for the square Ising lattice. The spontaneous magnetization can be obtained easily and agrees with that previously derived.


KEY WORDS: Ising model; triangular lattice; corner transfer matrices; spontaneous magnetization.

## 1. INTRODUCTION

One of the most famous models in statistical mechanics is the Ising model for ferromagnetism. Since Onsager gave the exact solution of the twodimensional Ising model for square lattice in 1944, ${ }^{(1)}$ intensive studies have been carried out on the model and various different approaches to the problem have been developed. In the 1950 s several independent results for some thermodynamic properties of the triangular Ising lattice appeared simultaneously, ${ }^{(2-4)}$ and various aspects of the triangular lattice have been studied thoroughly. ${ }^{(5)}$

Most recently, Baxter has initiated a new technique for the eight-vertex model on the square lattice using "corner transfer matrices." (6,7) It is the purpose of this paper to apply these ideas to the anisotropic, ferromagnetic, triangular Ising lattice below its critical temperature. It is found that the diagonal form of the corner transfer matrix for the triangular lattice shows essentially the same structure as that for the square Ising lattice proposed

[^0]by Baxter ${ }^{(6,7)}$ and that the method arrives at the same result for the spontaneous magnetization as that obtained by other approaches. ${ }^{(4)}$

We will define the corner transfer matrix (CTM) for the triangular Ising lattice in zero field in Section 2. As for the square lattice, we can diagonalize the CTM and find its eigenvalues by using spinor representations first developed by Kaufmann. ${ }^{(8)}$ The essential procedure in the derivation and the results of our analysis on the representatives of the CTM are presented in Section 3. In Section 4, we conclude by giving the diagonal form of the CTM and obtain the expression for the spontaneous magnetization of the ferromagnetic triangular Ising model.

Although no new thermodynamic results have yet been obtained by this approach, it is hoped that the simplicity of the final expression for the diagonal form of the corner transfer matrix may provide illuminating insights into this model.

## 2. THE CORNER TRANSFER MATRIX

As the starting point of our formulation, we define the corner transfer matrix for a general anisotropic triangular Ising lattice in zero magnetic field.

Consider a hexagonal-shaped lattice plane with $2 n+1$ spins sites along the major diagonals of the hexagonal, as shown in Fig. 1. We impose the condition that the boundary spins of the lattice are all +1 . Label the three principal directions of the lattice as $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ and assume only nearest neighbor interactions with energies $J_{1}, J_{2}$, and $J_{3}$ along these three directions


Fig. 1. A triangular lattice with hexagonal boundary and $2 n+1(n=4)$ spins along each diagonal.
$\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$, respectively. Let $\sigma_{i}= \pm 1$ be the spin of the $i$ th site; then the Hamiltonian of the system is given by

$$
\begin{equation*}
H=-\sum_{\text {n.n. }} J_{i j} \sigma_{i} \sigma_{j} \tag{1}
\end{equation*}
$$

where the summation is over all nearest neighbors and $J_{i j}=J_{1}, J_{2}$, or $J_{3}$, depending on whether the bond between the spins $\sigma_{i}$ and $\sigma_{j}$ is in the direction $\mathbf{a}, \mathbf{b}$, or $\mathbf{c}$, respectively. The partition function is given by

$$
\begin{equation*}
Z_{n}=\sum \exp (-\beta H) \tag{2}
\end{equation*}
$$

where $\beta=1 / k_{\mathrm{B}} T$ and the summation here is over all possible spin configurations of the lattice.

In a similar way to Ref. 6, we divide the lattice into six "corners" ( $A$ to $F$ ) with three cuts along the major diagonals of the hexagonal. The partition is such that each corner contains all the bonds between the spins inside the corner but only bonds on the left cut, as seen from the center spin of the lattice (see Fig. 2 for corner $A$ ).

Let the center spin of the lattice be $\sigma_{1}$ and denote the six half-cuts of the lattice by $\tau_{1}, \ldots, \tau_{6}$ as in Fig. 1. Clearly, if all the spins on $\tau_{1}, \ldots, \tau_{8}$ are held fixed, the summation in (2) can be factorized into six parts and $Z_{n}$ can be written as

$$
\begin{equation*}
Z_{n}=\sum_{\tau_{1}} \cdots \sum_{\tau_{6}} A\left(\tau_{1} \mid \tau_{2}\right) B\left(\tau_{2} \mid \tau_{3}\right) \cdots F\left(\tau_{6} \mid \tau_{1}\right) \tag{3}
\end{equation*}
$$

where $A\left(\tau_{1} \mid \tau_{2}\right), \ldots, F\left(\tau_{6} \mid \tau_{1}\right)$ are the corner transfer matrices that account


Fig. 2. Corner $A$ of the lattice corresponding to CTM $A$. The summation in (4) is over all dotted spins.
for the contributions to $Z_{n}$ from bonds in the respective corners. More explicitly, if we denote the spins of $\tau_{1}$ by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ and those of $\tau_{2}$ by $\sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}$, we have, for example, that the matrix $A$ is given by

$$
\begin{equation*}
A\left(\tau_{1} \mid \tau_{2}\right)=\delta_{\sigma_{1}, \sigma_{1}^{\prime}} \sum \exp \left(-\beta H_{\mu \gamma}\right) \tag{4}
\end{equation*}
$$

where $H_{u \gamma}$ is the interaction Hamiltonian involving all the bonds of the corner and the summation is over all interior spins of the corner as shown in Fig. 2.

Furthermore, it can be seen readily that the matrix $D$ is the same as $A$, $E$ as $B$, and $F$ as $C$. Hence (3) can be written as

$$
\begin{equation*}
Z_{n}=\operatorname{Tr}(A B C)^{2} \tag{5}
\end{equation*}
$$

We further note that $B$ is obtained from $A$ by replacing $J_{1}$ by $J_{2}, J_{2}$ by $J_{3}$, and $J_{3}$ by $J_{1}$. Similarly, $C$ is obtained from $A$ by replacing $J_{1}$ by $J_{3}, J_{3}$ by $J_{2}$, and $J_{2}$ by $J_{1}$.

In the thermodynamic limit, the partition function per site is given by

$$
\begin{equation*}
Z=\lim _{n \rightarrow \infty} Z_{n}^{1 / N} \tag{6}
\end{equation*}
$$

where $N$ is the total number of sites in the lattice and the free energy per site $f$ is

$$
\begin{equation*}
-\beta f=\lim _{n \rightarrow \infty} \frac{1}{N} \ln Z_{n} \tag{7}
\end{equation*}
$$

Also, the spontaneous magnetization $M$ is just

$$
\begin{equation*}
M=\left\langle\sigma_{1}\right\rangle=\frac{\operatorname{Tr}\left\{S(A B C)^{2}\right\}}{\operatorname{Tr}\left\{(A B C)^{2}\right\}} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
S\left(\sigma_{1}, \ldots, \sigma_{n} \mid \sigma_{1}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}\right)=\sigma_{1} \delta_{\sigma_{1}, \sigma_{1}^{\prime}} \delta_{\sigma_{2}, \sigma_{2}^{\prime}} \cdots \delta_{\sigma_{n}, \sigma_{n}^{\prime}} \tag{9}
\end{equation*}
$$

is the diagonal center-spin operator. Since the matrices $A, B$, and $C$ all break into two diagonal blocks corresponding to $\sigma_{1}=+1$ or -1 , they commute with the diagonal matrix $S$.

The problem of evaluating the partition function and spontaneous magnetization therefore reduces to evaluating the eigenvalues of the product $A B C$ of the corner transfer matrices.

## 3. THE REPRESENTATIVES OF THE CTM

The problem now is to diagonalize $A B C$. Since the method of calculation is essentially the same as the case of a square lattice, ${ }^{(7)}$ we will outline the important steps here and present the results afterwards.

### 3.1. The Representatives of CTM A, B, and C

Define a set of anticommuting operators by

$$
\begin{align*}
& \Gamma_{1}=d_{1}, \quad \Gamma_{2}=c_{1} s_{2} \\
& \Gamma_{2 j-1}=c_{1} \cdots c_{j-1} d_{j}, \quad \Gamma_{2 j}=c_{1} \cdots c_{j} s_{j+1}, \quad j=1, \ldots, n \tag{10}
\end{align*}
$$

where $s_{j}, c_{j}$, and $d_{j}$ are the Pauli spin operators acting on the $j$ th spin and are given by

$$
\begin{align*}
s_{j}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad c_{j} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad d_{j}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)  \tag{11}\\
j & =1, \ldots, n
\end{align*}
$$

and

$$
s_{n+1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

is the identity matrix.
The set of all nonsingular $2^{n} \times 2^{n}$ matrices $X$ such that

$$
\begin{equation*}
X \Gamma_{l} X^{-1}=\sum_{k=1}^{2 n} \hat{\chi}_{k l} \Gamma_{k}, \quad l=1, \ldots, 2 n \tag{12}
\end{equation*}
$$

for some $\hat{\chi}_{k l}$ forms a group $\mathscr{G}$. The $2 n \times 2 n$ matrix with elements $\hat{\chi}_{k i}$ is called the representative of $X$ and is denoted by $\hat{X}$. The representatives have the following properties:
(i) From the anticommuting properties of the $\Gamma_{k}$, each representative of the group is orthogonal. Furthermore, each representative determines its parent matrix to within a multiplicative constant.
(ii) If $X_{1}, X_{2}, \ldots, X_{n}, Y$ are members of the group such that $X_{1} X_{2} \cdots X_{n}^{\prime}=Y$, then the corresponding representatives $\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}_{n}, \hat{Y}$ satisfy the same relationship, i.e., $\widehat{X}_{1} \widehat{X}_{2} \cdots \widehat{X}_{n}=\hat{Y}$.

As for the CTMs, one can decompose them into row matrices in a similar way as for the square lattice. ${ }^{(6)}$

We consider a more symmetric corner, which includes the bonds on both of the cuts, and denote it by $A^{\prime}$ for corner $A$ and similarly $B^{\prime}$ and $C^{\prime}$ for corners $B$ and $C$, respectively. Obviously, the new corner transfer matrix $A^{\prime}$ is related to CTM $A$ through

$$
\begin{equation*}
A=L_{A} A^{\prime} \tag{13}
\end{equation*}
$$



Fig. 3. The $j$ th row of the corner $A^{\prime}$, which corresponds to the matrix $G_{j}$.
where $L_{A}$ is the matrix that cancels the effect of the added bonds, or, more explicitly,

$$
\begin{align*}
& L_{A}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \mid \sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}\right) \\
& \quad=\left\{\exp \left[-K_{2}\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\cdots+\sigma_{n} \sigma_{n+1}\right)\right]\right\} \delta_{\sigma_{1}, \sigma_{1}^{\prime}} \cdots \delta_{\sigma_{n}, \sigma_{n}^{\prime}} \tag{14}
\end{align*}
$$

with $\sigma_{n+1}=1$.
The corner $A^{\prime}$ can be built up by rows of triangles as shown in Fig. 3. If we define $2^{n} \times 2^{n}$ matrices $G_{j}(j=1, \ldots, n)$ by

$$
\begin{align*}
& G_{j}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \mid \sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}\right) \\
& \quad=\delta_{\sigma_{1}, \sigma_{1}^{\prime}} \cdots \delta_{\sigma_{j}, \sigma_{j}^{\prime}} \exp \left(\beta \sum_{k=j}^{n} J_{1} \sigma_{k+1} \sigma_{k+1}^{\prime}+J_{2} \sigma_{k} \sigma_{k+1}+J_{3} \sigma_{k}{ }^{\prime} \sigma_{k+1}^{\prime}\right) \tag{15}
\end{align*}
$$

with $\sigma_{n+1}=\sigma_{n+1}^{\prime}=1$, it can be easily seen that

$$
\begin{equation*}
A^{\prime}=G_{1} G_{2} \cdots G_{n} \tag{16}
\end{equation*}
$$

Furthermore, each row can be regarded as building up by triangles of spins one at a time (see Fig. 4). So each $G_{j}$ can be written as

$$
\begin{equation*}
G_{j}=V_{n} V_{n-1} \cdots V_{j} \tag{17}
\end{equation*}
$$

where $V_{j}$ is given by

$$
\begin{align*}
& V_{j}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \mid \sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}\right) \\
& \quad=\delta_{\sigma_{1}, \sigma_{1}^{\prime}} \delta_{\sigma_{2}, \sigma_{2}^{\prime}} \cdots \delta_{\sigma_{j}, \sigma_{j}^{\prime}} \delta_{\sigma_{j+2}, \sigma_{j+2}^{\prime}} \cdots \delta_{\sigma_{n}, \sigma_{n}^{\prime}} \\
& \quad \quad \times \exp \left[\beta\left(J_{1} \sigma_{j+1} \sigma_{j+1}^{\prime}+J_{2} \sigma_{j} \sigma_{j+1}+J_{3} \sigma_{j}^{\prime} \sigma_{j+1}^{\prime}\right)\right] \tag{18}
\end{align*}
$$



Fig. 4. The spin interactions correspond to matrix $V_{j}$.

The $V_{j}$ can be written as a product of the Pauli spin operators defined in (11), i.e.,

$$
\begin{align*}
V_{j}= & \left(2 \sinh 2 K_{1}\right)^{1 / 2} \exp \left(K_{2} s_{j} s_{j+1}\right) \\
& \times \exp \left(K_{1}^{*} c_{j+1}\right) \exp \left(K_{3} s_{j} s_{j+1}\right), \quad j=1,2, \ldots, n-1  \tag{19}\\
V_{n}= & \exp \left(K_{2} s_{n}\right) \exp \left(K_{3} s_{n}\right)
\end{align*}
$$

where

$$
\begin{equation*}
K_{i}=\beta J_{i}, \quad \tanh K_{i}^{*}=\exp \left(-2 K_{i}\right), \quad i=1,2,3 \tag{20}
\end{equation*}
$$

Similarly, $L_{A}$ can be written as

$$
\begin{equation*}
L_{A}=\prod_{j=1}^{n} \exp \left(-K_{2} s_{j} s_{j+1}\right), \quad s_{n+1}=1 \tag{21}
\end{equation*}
$$

It can be verified that all the matrices $V_{j}$ and $L_{A}$ belong to the group $\mathscr{G}$ mentioned above, e.g.,
$2 j-1$
$2 j \quad 2 j+1$

where

$$
\begin{align*}
\gamma=\operatorname{coth} 2 K_{1}, & \delta=\operatorname{cosech} 2 K_{1} \\
\alpha=\cosh 2 K_{2}, & \beta=\sinh 2 K_{2}  \tag{23}\\
\alpha^{\prime}=\cosh 2 K_{3}, & \beta^{\prime}=\sinh 2 K_{3}
\end{align*}
$$

and

$$
\hat{L}_{A}=\left(\begin{array}{lllll}
\alpha & -i \beta & 0 & 0 &  \tag{24}\\
i \beta & \alpha & 0 & 0 & \\
0 & 0 & \alpha & -i \beta & \\
0 & 0 & i \beta & \alpha & \\
& & & & \ddots
\end{array}\right)
$$

Hence the CTMs $A, B$, and $C$ are also members of the group (i.e., their representatives under $\Gamma_{k}$ exist).

### 3.2. Diagonalization of $\hat{A} \hat{B} \hat{C}$

Before we continue our analysis, we observe that the CTMs $A, B$, and $C$ (hence their representatives) do not necessarily commute with each other for arbitrary $J_{1}, J_{2}$, and $J_{3}$. However, our aim is to diagonalize the matrix $A B C(=\mathscr{D})$, i.e., to look for a matrix, say $P_{2}$, such that

$$
\begin{equation*}
P_{2}^{-1} \mathscr{D} P_{2}=\mathscr{D}_{d} \tag{25}
\end{equation*}
$$

where $\mathscr{D}_{d}$ is a diagonal matrix.
As for the representative of $A B C$, we consider a matrix (say $\hat{P}_{2}$ ) that takes $\hat{A} \hat{B} \hat{C}(=\hat{\mathscr{D}})$ to a block diagonal matrix $\hat{\mathscr{D}}_{d}$ given by

$$
\hat{\mathscr{D}}_{d}=\hat{P}_{2}^{-1} \hat{\mathscr{D}} \hat{P}_{2}=\left(\begin{array}{lllll}
\lambda_{1} & & & &  \tag{26}\\
& \lambda_{2} & & & \\
& & \ddots & & \\
& & & \lambda_{j} & \\
& & & & \ddots .
\end{array}\right)
$$

where $\lambda_{j}$ are $2 \times 2$ orthogonal matrices. Since $\hat{\mathscr{D}}$ and $\hat{\mathscr{D}}_{d}$ are orthogonal matrices, one can choose $\hat{P}_{2}$ to be orthogonal also. As $\hat{A}, \hat{B}$, and $\hat{C}$ are all orthogonal matrices, we may define orthogonal matrices $\hat{P}_{1}$ and $\hat{P}_{3}$ such that

$$
\begin{align*}
& \hat{P}_{2}^{-1} \hat{A} \hat{P}_{3}=\hat{A}_{d}  \tag{27a}\\
& \hat{P}_{3}^{-1} \hat{B} \hat{P}_{1}=\hat{B}_{d}  \tag{27b}\\
& \hat{P}_{1}^{-1} \hat{C} \hat{P}_{2}=\hat{C}_{d} \tag{27c}
\end{align*}
$$

and require that $\hat{A}_{d}, \hat{B}_{d}$, and $\hat{C}_{d}$ are all orthogonal and of block diagonal form. For example, $\hat{A}_{d}$ is given by

$$
\hat{A}_{d}=\left(\begin{array}{ccccc}
\lambda_{1}^{(1)} & & & &  \tag{28}\\
& \lambda_{2}^{(1)} & & & \\
& & \ddots & & \\
& & & \lambda_{j}^{(1)} & \\
& & & & \ddots
\end{array}\right)
$$

where $\lambda_{j}^{(1)}$ are $2 \times 2$ orthogonal matrices, and similarly for $\hat{B}_{d}$ and $\hat{C}_{d}$ with $\lambda_{j}^{(1)}$ replaced by $\lambda_{j}^{(2)}$ and $\lambda_{j}^{(3)}$, respectively. Obviously, we then have

$$
\begin{equation*}
\hat{A}_{d} \hat{B}_{d} \hat{C}_{d}=\hat{\mathscr{Q}}_{a} \tag{29}
\end{equation*}
$$

Note that from the set of equations (27a)-(27c) $\hat{P}_{1}$ is a matrix that diagonalizes the matrix $\hat{C A} \hat{B}$ and $\hat{P}_{3}$ a matrix that diagonalizes $\hat{B C} \hat{A}$ to block diagonal form.

From properties (i) and (ii) of the representatives, the corresponding matrices in $\mathscr{G}$ of the representatives $\hat{A}_{d}, \hat{B}_{d}, \hat{C}_{d}$, and $\hat{P}_{i}$ can be chosen to satisfy the set of equations (27a)-(27c) also, i.e., we can find $2^{n} \times 2^{n}$ matrices $A_{d}, B_{d}, C_{d}$, and $P_{i}, i=1,2,3$, in $\mathscr{G}$ satisfying

$$
\begin{equation*}
P_{2}^{-1} A P_{3}=A_{d} ; \quad P_{3}^{-1} B P_{1}=B_{d} ; \quad P_{1}^{-1} C P_{2}=C_{d} \tag{30}
\end{equation*}
$$

Also,

$$
\begin{equation*}
A_{d} B_{d} C_{d}=\mathscr{D}_{d} \tag{31}
\end{equation*}
$$

Since each $\lambda_{j}$ is a $2 \times 2$ orthogonal matrix, it can be written as

$$
\lambda_{j}=\frac{1}{2}\left(\begin{array}{rl}
\rho_{j}+\rho_{j}^{-1} & i\left(\rho_{j}^{-1}-\rho_{j}\right)  \tag{32}\\
-i\left(\rho_{j}^{-1}-\rho_{j}\right) & \rho_{j}+\rho_{j}^{-1}
\end{array}\right)
$$

where $\rho_{j}$ is a scalar.
Consider the following $2^{n} \times 2^{n}$ matrix:

$$
\begin{equation*}
\prod_{j=1}^{n} \frac{1}{2}\left[\left(1+p_{j}\right)+\left(1-\rho_{j}\right) s_{j} s_{j+1}\right] \tag{33}
\end{equation*}
$$

One can easily show that it has the same representative $\hat{\mathscr{G}}_{a}$ as given by (26) and (32). From property (i) of the representatives, we conclude that it is therefore the same as $\mathscr{D}_{d}$ to within a multiplicative constant. Hence, if we can solve (26) or equivalently (27a)-(27c), we shall have obtained the diagonal form of $\mathscr{D}$.

We now perform the analysis on the representatives. It is convenient to group the elements of the matrices $\hat{A}, \hat{B}, \hat{C}$, and $\hat{P}_{l}(l=1,2,3)$ into $2 \times 2$ blocks and write

$$
\begin{equation*}
\hat{A}=\left(a_{i j}\right) ; \quad \hat{B}=\left(b_{i j}\right) ; \quad \hat{C}=\left(c_{i j}\right) \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{P}_{l}=\left(p_{i j}^{(l)}\right), \quad l=1,2,3 \tag{35}
\end{equation*}
$$

where $a_{i j}, b_{i j}, c_{i j}$, and $p_{i j}^{(l)}$ are all $2 \times 2$ matrices. In the limit of $n$ large, each element tends to a limit. These limiting values are conveniently expressed in terms of generating functions defined by

$$
\begin{align*}
\mathscr{A}(y, z) & =\sum_{i, j} a_{i j} y^{i-1} z^{j-1}  \tag{36a}\\
\mathscr{B}(z, x) & =\sum_{i, j} b_{i j} z^{i-1} x^{j-1}  \tag{36b}\\
\mathscr{C}(x, y) & =\sum_{i, j} c_{i j} x^{i-1} y^{j-1} \tag{36c}
\end{align*}
$$

and

$$
\begin{equation*}
p_{j}^{(l)}(x)=\sum_{k=1}^{\infty} x^{k-1} p_{k j}^{(l)}, \quad l=1,2,3, \quad j=1,2, \ldots \tag{37}
\end{equation*}
$$

From (37) we have

$$
\begin{equation*}
p_{k j}^{(l)}=\frac{1}{2 \pi i} \int_{c_{i}} y^{-k} p_{j}^{(l)}(y) d y, \quad l=1,2,3 \tag{38}
\end{equation*}
$$

where the counter of integration $c_{l}$ is a simple closed curve surrounding the origin in the $y$ plane within and on which $p_{j}^{(l)}(y)$ is analytic.

In view of Eqs. (34) and (35), the set of equations (27a)-(27c) can be expressed in the form

$$
\begin{align*}
& \sum_{k=1}^{\infty} a_{i k} p_{k j}^{(3)}=p_{i j}^{(2)} \lambda_{j}^{(1)}  \tag{39a}\\
& \sum_{k=1}^{\infty} b_{i k} p_{k j}^{(1)}=p_{i j}^{(3)} \lambda_{j}^{(2)} \tag{39b}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{i k} p_{k j}^{(2)}=p_{i j}^{(1)} \lambda_{j}^{(3)} \tag{39c}
\end{equation*}
$$

Hence, from (36a)-(36c), (38), and (39a)-(39c) one can easily arrive at the coupled integral equations

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{c_{3}} \mathscr{A}\left(y, z^{-1}\right) p_{j}^{(3)}(z) \frac{d z}{z}=p_{j}^{(2)}(y) \lambda_{j}^{(1)}  \tag{40a}\\
& \frac{1}{2 \pi i} \int_{c_{1}} \mathscr{B}\left(z, x^{-1}\right) p_{j}^{(1)}(x) \frac{d x}{x}=p_{j}^{(3)}(z) \lambda_{j}^{(2)} \tag{40b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c_{2}} C\left(x, y^{-1}\right) p_{j}^{(2)}(y) \frac{d y}{y}=p_{j}^{(1)}(x) \lambda_{j}^{(3)} \tag{40c}
\end{equation*}
$$

The generating functions $\mathscr{A}, \mathscr{B}$, and $\mathscr{C}$ can be evaluated explicitly. For example, $\mathscr{A}$ is found to be

$$
\mathscr{A}(y, z)=\frac{1}{\Delta}\left(\begin{array}{ll}
{\left[\alpha^{\prime}(1+z \delta \beta)-y z \alpha \gamma\right]} & i\left[\beta^{\prime}(1+z \delta \beta)+y z \beta-y \delta\right]  \tag{41}\\
-i\left[\beta^{\prime} \gamma+y z \beta \gamma-z \alpha \alpha^{\prime} \delta\right] & {\left[\alpha^{\prime} \gamma-z \alpha\left(\delta \beta^{\prime}+y\right)\right]}
\end{array}\right)
$$

with

$$
\begin{equation*}
\Delta=1+y \delta \beta^{\prime}+z \delta \beta-2 y z\left(\beta \beta^{\prime}+\alpha \alpha^{\prime} \gamma\right)+y^{2} z \delta \beta+y z^{2} \delta \beta^{\prime}+y^{2} z^{2} \tag{42}
\end{equation*}
$$

where $\gamma, \delta, \alpha, \alpha^{\prime}, \beta$, and $\beta^{\prime}$ are defined in (23). Note that if we put $y=e^{i \theta}$ and $z=e^{i \phi}$, (42) becomes

$$
\begin{aligned}
\Delta= & \frac{-2 y z}{\sinh 2 K_{1}}\left[\cosh 2 K_{1} \cosh 2 K_{2} \cosh 2 K_{3}+\sinh 2 K_{1} \sinh 2 K_{2} \sinh 2 K_{3}\right. \\
& \left.-\sinh 2 K_{2} \cos \theta-\sinh 2 K_{1} \cos (\theta+\phi)-\sinh 2 K_{3} \cos \phi\right]
\end{aligned}
$$

The expression in brackets is just the integrand of the double integral for the free energy of the triangular lattice. ${ }^{(2)}$

### 3.3. Elliptic Function Parametrization

To solve the coupled integral equations (40a)-(40c) we apply the elliptic function parametrization, which occurs naturally for the triangular lattice as follows:

$$
\begin{align*}
\cosh 2 K_{i} & =\operatorname{cn}\left(2 v_{i}\right)  \tag{43a}\\
\sinh 2 K_{i} & =-i \operatorname{sn}\left(2 v_{i}\right), \quad i=1,2,3 \tag{43b}
\end{align*}
$$

where $\mathrm{sn}, \mathrm{cn}$, and dn are Jacobian elliptic functions with modulus $k$ given by ${ }^{(5)}$

$$
\begin{equation*}
k^{2}=\frac{\left[\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right)\left(1-t_{3}^{2}\right)\right]^{2}}{16\left(1+t_{1} t_{2} t_{3}\right)\left(t_{1}+t_{2} t_{3}\right)\left(t_{2}+t_{3} t_{1}\right)\left(t_{3}+t_{1} t_{2}\right)} \tag{44}
\end{equation*}
$$

where $t_{i}=\tanh K_{i}, i=1,2,3$.

Now if we restrict ourselves to the regime where all the $K_{i}$ are real and positive (i.e., we consider only the pure ferromagnetic case), the $v_{i}$ will be all purely imaginary and are subjected to the following conditions:

$$
0<\operatorname{Im} v_{i}<K^{\prime} / 2, \quad v_{1}+v_{2}+v_{3}=i K^{\prime} / 2
$$

where $K, K^{\prime}$ are the complete elliptic integrals of the first kind of moduli $k$, $k^{\prime}=\left(1-k^{2}\right)^{1 / 2}$, respectively. (These are not to be confused with the energy coefficients $K_{1}, K_{2}$, and $K_{3}$ used above). If we apply the following transformations to the variables of the integral equations (40a)-(40c)

$$
\begin{align*}
& x=k \operatorname{sn}\left(u_{1}+v_{1}\right) \operatorname{sn}\left(u_{1}-v_{1}\right)  \tag{45a}\\
& y=k \operatorname{sn}\left(u_{2}+v_{2}\right) \operatorname{sn}\left(u_{2}-v_{2}\right)  \tag{45b}\\
& z=k \operatorname{sn}\left(u_{3}+v_{3}\right) \operatorname{sn}\left(u_{3}-v_{3}\right) \tag{45c}
\end{align*}
$$

we can solve the equations in terms of the new variables $u_{1}, u_{2}, u_{3}$. If we define a new kernel by

$$
\begin{align*}
& W_{1}^{*}\left(u_{2}, u_{3}\right) d u_{3}=\mathscr{A}\left(y, z^{-1}\right) d z / z  \tag{46a}\\
& W_{2}^{*}\left(u_{3}, u_{1}\right) d u_{1}=\mathscr{B}\left(z, x^{-1}\right) d x / x  \tag{46b}\\
& W_{3}^{*}\left(u_{1}, u_{2}\right) d u_{2}=\mathscr{C}\left(x, y^{-1}\right) d y / y \tag{46c}
\end{align*}
$$

we find that each kernel can be written as a product of three matrices, i.e.,

$$
\begin{equation*}
W_{i}^{*}\left(u_{j}, u_{l}\right)=D^{-1}\left(u_{j}, v_{j}\right) M_{i}\left(u_{j}, u_{l}\right) D\left(u_{l}, v_{l}\right) \tag{47}
\end{equation*}
$$

where $i j l$ are cyclic permutations of 123 , and $D(u, v)$ and $M_{i}\left(u_{j}, u_{l}\right)$ are $2 \times 2$ matrices given by

$$
\begin{align*}
D(u, v) & =\left(\begin{array}{rr}
-\operatorname{cn}(u-v) & \operatorname{dn}(u+v) \\
\operatorname{sn}(u-v) \\
\operatorname{cn}(u+v) & \operatorname{sn}(u+v) \\
\operatorname{dn}(u-v)
\end{array}\right)  \tag{48}\\
M_{i}\left(u_{j}, u_{l}\right) & =\left(\begin{array}{rr}
\phi\left(u_{l}-u_{j}+v_{j}+v_{l}\right) & -\phi\left(u_{j}+u_{l}-v_{j}-v_{l}\right) \\
-\phi\left(u_{j}+u_{l}+v_{j}+v_{l}\right) & \phi\left(u_{l}-u_{j}-v_{j}-v_{l}\right)
\end{array}\right) \tag{49}
\end{align*}
$$

with

$$
\begin{equation*}
\phi(u)=\operatorname{dn}(u) / \operatorname{sn}(u) \tag{50}
\end{equation*}
$$

Note that once more the integral equation is reduced to one involving a difference kernel form by the transformation. ${ }^{(9)}$

The coupled integral equations (40a)-(40c) become

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\boldsymbol{c}_{i}^{\prime}} W_{i}^{*}\left(u_{j}, u_{l}\right) p_{m}^{(l)}\left(u_{l}\right) d u_{l}=p_{m}^{(j)}\left(u_{j}\right) \lambda_{m}^{(i)} \tag{51}
\end{equation*}
$$

with $i j l$ being cyclic permutations of 123 . Under the transformation (35), the contour of integration $c_{l}^{\prime}$ in (51) becomes a line segment $\left(i \eta_{l}-K, i \eta_{l}+K\right)$
in the $u_{l}$ plane, where $\eta_{l}$ is such that the corresponding contour $c_{l}$ in the original $x, y$, or $z$ (for $l=1,2$, or 3 ) plane surrounds the poles of the kernel $\mathscr{B}\left(z, x^{-1}\right), \mathscr{C}\left(x, y^{-1}\right)$, or $\mathscr{A}\left(y, z^{-1}\right)$ for $l=1,2$, or 3 , respectively. An appropriate choice of $\eta_{l}$ for (51) is

$$
\begin{equation*}
\left|\operatorname{Im} u_{j}\right|+\operatorname{Im}\left(v_{j}+v_{l}\right)<\eta_{l}<2 i K^{\prime}-\left|\operatorname{Im} u_{j}\right|-\operatorname{Im}\left(v_{j}+v_{l}\right) \tag{52}
\end{equation*}
$$

Equations (40a)-(40c) can then be solved by defining $f_{j}^{(i)}\left(u_{i}\right)=D\left(u_{i}, v_{i}\right) \times$ $p_{j}^{(i)}\left(u_{i}\right), i=1,2,3$, and expanding the functions $f$ and $\phi$ in Fourier series.

### 3.4. The Result of the Integral Equations

On solving the equations, one obtains that the function $f_{j}^{(i)}(u)$ is given by

$$
f_{j}^{(i)}(u)=\left[e^{i \pi(2 j-1) u / 2 K}-\left(\begin{array}{ll}
0 & 1  \tag{53}\\
1 & 0
\end{array}\right) e^{-i \pi(2 j-1) u / 2 K}\right] F_{j}^{(i)}
$$

where

$$
F_{j}^{(i)}=\left(\begin{array}{ll}
-i \rho_{j}^{(i)} & \rho_{j}^{(i)}  \tag{54}\\
i \gamma_{j}^{(i)} & \gamma_{j}^{(i)}
\end{array}\right)
$$

The $\rho_{j}^{(i)}$ and $\gamma_{j}^{(i)}$ are arbitrary. By the condition that the matrices $P_{i}$ are orthogonal, i.e.,

$$
\sum_{m=1}^{\infty} P_{m j}^{(i) T} P_{m l}^{(i)}=\delta_{j l}
$$

we have a relationship between $\rho_{j}^{(i)}$ and $\gamma_{j}^{(i)}$ :

$$
\begin{equation*}
\rho_{j}^{(i)} \gamma_{j}^{(i)}=\frac{-\pi q^{j-(1 / 2)}}{2 k K\left(1+q^{2 j-1}\right)} \tag{55}
\end{equation*}
$$

and $\lambda_{j}$ in (15) is given by

$$
\lambda_{j}=\lambda_{j}^{(1)} \lambda_{j}^{(2)} \lambda_{j}^{(3)}=\frac{1}{2}\left(\begin{array}{ll}
q^{j-(1 / 2)}+q^{(1 / 2)-j} & i\left(q^{(1 / 2)-j}-q^{j-(1 / 2)}\right)  \tag{56}\\
-i\left(q^{(1 / 2)-j}-q^{j-(1 / 2)}\right) & q^{j-(1 / 2)}+q^{(1 / 2)-j}
\end{array}\right)
$$

where $q$ is the "nome" of the elliptic functions given by $q=\exp \left(-\pi K^{\prime} / K\right)$.
Further, the matrix $L_{A}^{-1 / 2} \mathscr{D} L_{A}^{1 / 2}$ is symmetric, so it is natural to require that $L_{A}^{-1 / 2} P_{2}$ be orthogonal. From the definitions (10)-(12), the representative of an orthogonal matrix $X$ is made up of two by two diagonal subblocks. It follows that $\rho_{j}^{(i)}$ and $\gamma_{j}^{(i)}$ must be equal, so from (55)

$$
\begin{equation*}
\rho_{j}^{(i)}=\gamma_{j}^{(i)}= \pm i\left[\frac{\pi q^{j-(1 / 2)}}{2 k K\left(1+q^{2 j-1}\right)}\right]^{1 / 2} \tag{57}
\end{equation*}
$$

Also, $\hat{A}_{d}, \hat{B}_{d}$, and $\hat{C}_{d}$ take up a very simple and neat form with

$$
\lambda_{j}^{(i)}=\frac{1}{2}\left(\begin{array}{ll}
\omega_{i}^{j-(1 / 2)}+\omega_{i}^{(1 / 2)-j} & i\left(\omega_{i}^{(1 / 2)-j}-\omega_{i}^{j-(1 / 2)}\right)  \tag{58}\\
-i\left(\omega_{i}^{(1 / 2)-j}-\omega_{i}^{j-(1 / 2)}\right) & \omega_{i}^{j-(1 / 2)}+\omega_{i}^{1 / 2)-j}
\end{array}\right)
$$

where

$$
\begin{equation*}
\omega_{i}=q^{1 / 2} e^{-i \pi v_{i} / K}, \quad i=1,2,3 \tag{59}
\end{equation*}
$$

Unfortunately, the matrices $P_{1}, P_{2}$, and $P_{3}$ do not appear to have any simple structure, but we do note from (48), (53), and (57) that $P_{1}$ depends only on $k$ and $v_{1}$ (not on $v_{2}$ or $v_{3}$ ), and similarly for $P_{2}$ and $P_{3}$.

## 4. THE DIAGONAL FORM OF THE CORNER TRANSFER MATRICES AND THE MAGNETIZATION

Back to the original CTM, it is clear from (26), (32), (33), and (56) that the matrix $\mathscr{D}_{d}$ can be written

$$
\begin{equation*}
\mathscr{O}_{d}=\text { const } \times \prod_{j=1}^{\infty} \frac{1}{1}\left[\left(1+q^{j-(1 / 2)}\right)+\left(1-q^{j-(1 / 2)}\right) s_{j} s_{j+1}\right] \tag{60}
\end{equation*}
$$

We now consider the following transformation of the representation (which corresponds to merely rearranging the rows and columns of the matrices). We replace $\sigma_{1}, \ldots, \sigma_{n}$ and $\sigma_{1}{ }^{\prime}, \ldots, \sigma_{n}{ }^{\prime}$ by the new spin variables $\mu_{1}, \ldots, \mu_{n}$ and $\mu_{1}^{\prime}, \ldots, \mu_{n}{ }^{\prime}$ through

$$
\begin{equation*}
\mu_{j}=\sigma_{j} \sigma_{j+1}, \quad \mu_{j}^{\prime}=\sigma_{j}^{\prime} \sigma_{j+1}^{\prime}, \quad j=1, \ldots, n-1 \tag{61}
\end{equation*}
$$

and $\mu_{n}=\sigma_{n}, \mu_{n}{ }^{\prime}=\sigma_{n}{ }^{\prime}$. Under this transformation, we have

$$
s_{j} s_{j+1} \rightarrow s_{j}, \quad s_{1} \rightarrow s_{1} \cdots s_{n}
$$

with the new $s_{j}, c_{j}, d_{j}$ defined under the new spin representation $\mu_{j}$ and $\mu_{j}{ }^{\prime}$. Hence, the matrix $S$ in (9) under the new representation is given by

$$
S=s_{1} s_{2} \cdots s_{n}=\left(\begin{array}{rr}
1 & 0  \tag{62}\\
0 & -1
\end{array}\right) \otimes\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \otimes \cdots
$$

and Eq. (60) becomes

$$
\begin{equation*}
\mathscr{D}_{d}=\text { const } \times \prod_{j=1}^{n} \frac{1}{2}\left[\left(1+q^{j-(1 / 2)}\right)+\left(1-q^{j-(1 / 2))} s_{j}\right]\right. \tag{63}
\end{equation*}
$$

The diagonal form of the matrix $\mathscr{D}$ can therefore be written in a direct product form

$$
\mathscr{X}_{d}=\text { const } \times\left(\begin{array}{ll}
1 & 0  \tag{64}\\
0 & q^{1 / 2}
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & q^{3 / 2}
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & q^{5 / 2}
\end{array}\right) \otimes \cdots
$$

Actually in this representation, $A_{d}, B_{d}$, and $C_{d}$ in Eq. (30) also take up this simple form [as seen from (28) and (58)], e.g.,

$$
A_{d}=\text { const } \times\left(\begin{array}{ll}
1 & 0  \tag{65}\\
0 & \omega_{1}^{1 / 2}
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & \omega_{1}^{3 / 2}
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & \omega_{1}^{5 / 2}
\end{array}\right) \otimes \cdots
$$

Finally, from (8), the spontaneous magnetization is given by

$$
\begin{aligned}
M & =\frac{\operatorname{Tr}\left\{S(A B C)^{2}\right\}}{\operatorname{Tr}\left\{(A B C)^{2}\right\}} \\
& =\frac{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right) \cdots}{(1+q)\left(1+q^{3}\right)\left(1+q^{5}\right) \cdots} \\
& =\left(k^{\prime}\right)^{1 / 4} \\
& =\left(1-k^{2}\right)^{1 / 8}
\end{aligned}
$$

which is just the exact result obtained by other methods. ${ }^{(4,5)}$

## 5. CONCLUSION

The most interesting result obtained in this paper is the diagonal form of the product of the CTMs $A, B, C$. It can be written in a direct product form in essentially the same way as the square lattice. It suggests that this may be an inherent characteristic of a ferromagnetic Ising model independent of the type of lattice. The matrix $A_{d}$ (similarly $B_{d}$ or $C_{d}$ ) obtained in this paper depends on $v_{1}\left(v_{2}\right.$ or $\left.v_{3}\right)$ only through $\omega_{1}=\exp \left[-i \pi\left(v_{1}-\frac{1}{2} i K^{\prime}\right) / K\right]$. Hence it can be written in the form $\exp \left[\left(v_{1}-\frac{1}{2} i K^{\prime}\right) \mathscr{H}\right]$, where $\mathscr{H}$ is a diagonal matrix independent of $v_{1}$ (and $v_{2}, v_{3}$ ).

Although each CTM $A(B$ or $C)$ depends on all the three parameters $v_{1}, v_{2}$, and $v_{3}$, yet, as seen from (30),

$$
A=P_{2} A_{d} P_{3}^{-1}
$$

and from the fact that $P_{i}$ depends only on $v_{i}(i=1,2$, or 3 ), the CTMs can be factorized into a product of three matrices each of which depends on only one of the parameters in the limit of an infinite lattice. For example,

$$
A=P\left(v_{2}\right) A_{d}\left(v_{1}\right) P\left(v_{3}\right)
$$

## ACKNOWLEDGMENT

The author wishes to express her gratitude to Dr. R. J. Baxter for suggesting the problem and for his invaluable discussions and advice throughout the course of this work, as well as for his belpful criticisms on the first draft of this paper.

## REFERENCES

1. L. Onsager, Phys. Rev. 65:117 (1944).
2. R. M. F. Houtappel, Physica 16:425 (1950).
3. K. Husimi and I. Syozi, Prog. Theor. Phys. 5:177 (1950).
4. R. B. Potts, Proc. Phys. Soc. Lond. A 68:145 (1955).
5. J. Stephenson, J. Math. Phys. 5:1009 (1964); 11:420 (1970).
6. R. J. Baxter, J. Stat. Phys. 15:485 (1976).
7. R. J. Baxter, J. Stat. Phys. 17:1 (1977).
8. B. Kaufmann, Phys. Rev. 76:1232 (1949).
9. L. Onsager, The Ising Model in Two Dimensions, in Critical Phenomena in Alloys, Magnets and Superconductors, R. E. Mills, E. Ascher, and R. I. Jaffee, eds., p. 3.

[^0]:    ${ }^{1}$ Research School of Physical Sciences, The Australian National University, Canberra, Australia.

